@ OtterSec

A\

Security Assessment

™ M\

lulvy 29th 2024 — Prepared bv OtterSec
JU Y L, £UZL4H F1C E,_J aredl L y ULLC OCT U

Ajay Shankar Kunapareddy d1r3wolf@osec.io

Robert Chen notdeghost@osec.io

Table of Contents

Executive Summary 2
Overview 2
Key Findings 2
Scope 2

Findings 3

Vulnerabilities 4
0OS-SRP-ADV-00 | Incorrect Account Check D

General Findings 6
0S-SRP-SUG-00 | Centralization Risk 7
0S-SRP-SUG-01 | Code Validation 8

Appendices

Vulnerability Rating Scale 9

Procedure 10

© 2024 Otter Audits LLC. All Rights Reserved. 15558

01— Executive Summary

Overview

Solana Liquid ETF Staking engaged OtterSec to assess the restaking program. This assessment was
conducted between April 22nd and April 25th, 2024. We did a followup review on July24th, 2024. For
more information on our auditing methodology, refer to Appendix B.

Key Find
We produced 3 findings throughout this audit engagement.

In particular, we identified a high-risk vulnerability concerning the freeze account functionality, which
checks the frozen status of the wrong account (OS-SRP-ADV-00). Furthermore, we identified possible

additional checks during token initialization if the supply of the RST token mint is a non-zero amount

(0S-SRP-SUG-00}, and also highlighted the need for additional verification in the token account (OS-SRP-
SUG-01]).

Scope

The source code was delivered to us in a Git repository at
https://github.com/solana-liquid-etf-staking/restaking-program. This audit was perfomed against
‘commit ad8344 /. We did a followup review for PR #7/.

A brief description of the programs is as follows:

Name Description

The Solana Liquid ETF Staking restaking program provides a mechanism
for users to stake their LST tokens, earn rewards in the form of RST
tokens, and manage their staked assets throught freezing, thawing,
staking, unstaking, minting, and burning operations.

restaking

© 2024 Otter Audits LLC. All Rights Reserved. 28

02 — Findings

Overall, we reported 3 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICAL 0
'\ itk - 1]
HIGH

MEDIUM
LOW

INFO

© 2024 Otter Audits LLC. All Rights Reserved. 2570

03 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

freeze _rst_account checks the frozen status of

0S-SRP-ADV-00 MEDIUM RESOLVED ® the 1st_ata account instead of the rst_ata
account.

© 2024 Otter Audits LLC. All Rights Reserved. 4518

Solana Liquid ETF Staking Audit 03 — Vulnerabilities

Incorrect Account Check MEDIUM 0S-SRP-ADV-00

Description

The program utilizes the condition 1if self.lst_ata.is_frozen() in
restaking: :freeze_rst_account tocheckifthe RST account (rst_ata)is already frozen. However,

this check is incorrect as the program performs it on the Llst_ata account.

>_ restaking-program/src/contexts/restaking.rs

pub fn freeze rst _account(&mut self) -> Result<()> {

1f self.lst _ata.is _frozen() {
return Ok(())

F

let bump = [self.pool.bump];
oo e

freeze account(ctx)

By checking the +is_frozen() status of the incorrect account (Lst_ata instead of rst_ata), the

function may inaccurately determine that the RST account is already frozen when it is not. This may
result in unintended behavior, such as skipping the freezing operation when freezing is necessary.

Remediation

Refactor freeze_rst_account to check the status of rst_ata account.

Patch

Fixed in 9401126 and 4a25804.

© 2024 Otter Audits LLC. All Rights Reserved. a0

04 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an
Immediate security impact, they represent anti-patterns and may result in security issues in the future.

ID Description

There is a possible centralization risk during token initialization if the supply of
05-5RP-5UG-00 the RST token mintis a non-zero amount.

0S-SRP-SUG-01 Suggestion to include additional validations.

© 2024 Otter Audits LLC. All Rights Reserved. 6 /10

Solana Liquid ETF Staking Audit 04 — General Findings

Centralization Risk 0S-SRP-SUG-00

Description

In Initialize, if the rst_mint account provided for initialization already possesses a hon-zero

supply of tokens, it introduces a potential vulnerability. The admin may mint additional tokens to the
rst_mint account before transferring authority to control the minting process, artificially increasing the

token supply.

>_ restaking-program/src/contexts/initialize.rs

pub fn 1nitialize(&mut self, bumps: InitializeBumps) -> Result<()> {
self.pool.set_inner (RestakingPool {
lst_mint: self.lst_mint.key(),
rst_mint: self.rst_mint.key(),
bump: bumps.pool
r)3
Ok(())

Consequently, the admin may transfer authority to control the minting process to another account while
retaining a significant portion of the tokens. This allows the admin to manipulate the market by selling off
the inflated tokens for profit, devaluing other users’ assets.

Remediation

Ensure thatthe rst_mint account provided forinitialization has a zero supply of tokens before proceeding
with the initialization process. This pre-condition helps prevent the risk of token inflation.

Patch

Fixed in 9401126 by ensuring the supply of rst_mint in initialize.

© 2024 Otter Audits LLC. All Rights Reserved. L 6

Solana Liquid ETF Staking Audit 04 — General Findings

Code Validation 0S-SRP-SUG-01

Description

Implement additional checks on the token_account , such as verifying the mint and account owner.
However, skipping these checks should not have any security implications.

Remediation

Add the verification checks to the token account .

© 2024 Otter Audits LLC. All Rights Reserved. 8 /10

A — Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings may be found in the General Findings.

CRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

» Misconfigured authority or access control validation.
» Improperly designed economic incentives leading to loss of funds.

HIGH Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.
Examples:

» Loss of funds requiring specific victim interactions.
» Exploitation involving high capital requirement with respect to payout.

MEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

» Computational limit exhaustion through malicious input.
» Forced exceptions in the normal user flow.

LOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances
or undue risk.

Examples:

» Oracle manipulation with large capital requirements and multiple transactions.

INFO Best practices to mitigate future security risks. These are classified as general findings.
Examples:

» Explicit assertion of critical internal invariants.
» Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 9 /10

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and
Implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s
execution model. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strong understanding of the underlying system and the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 10 /10

